53,419 research outputs found

    Anomalous Gluon Self-Interactions and ttˉt \bar{t} Production

    Get PDF
    Strong-interaction physics that lies beyond the standard model may conveniently be described by an effective Lagrangian. The only genuinely gluonic CP-conserving term at dimension six is the three-gluon-field-strength operator G3G^3. This operator, which alters the 3-gluon and 4-gluon vertices form their standard model forms, turns out to be difficult to detect in final states containing light jets. Its effects on top quark pair production hold the greatest promise of visibility.Comment: Latex file using [aps,aipbook,floats,epsf]{revtex}. 12 pages, 4 Postscript figures. Full PS copy at http://smyrd.bu.edu/htfigs/htfigs.html Talk presented by EHS at the International Symposium on Vector Boson Self-Interactions, UCLA, Feb. 1-3, 199

    Strong and Electromagnetic Decays of Two New LambdacLambda_c^* Baryons

    Full text link
    Two recently discovered excited charm baryons are studied within the framework of Heavy Hadron Chiral Perturbation Theory. We interpret these new baryons which lie 308 \MeV and 340 \MeV above the Λc\Lambda_c as I=0I=0 members of a P-wave spin doublet. Differential and total decay rates for their double pion transitions down to the Λc\Lambda_c ground state are calculated. Estimates for their radiative decay rates are also discussed. We find that the experimentally determined characteristics of the Λc\Lambda_c^* baryons may be simply understood in the effective theory.Comment: 16 pages with 4 figures not included but available upon request, CALT-68-191

    Observation of confined propagation in Bragg waveguides

    Get PDF
    A new type of waveguiding in a slab dielectric bounded on one side by air and on the other by a periodic layered medium (grown by molecular beam epitaxy) has been demonstrated

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    Comment on DsDsπ0D_s^* \to D_s \pi^0 Decay

    Full text link
    We calculate the rate for DsDsπ0D_s^* \rightarrow D_s \pi^0 decay using Chiral Perturbation Theory. This isospin violating process results from π0\pi^0 - η\eta mixing, and its amplitude is proportional to (mdmu)/(ms(mu+md)/2)(m_d - m_u)/\bigl(m_s-(m_u+m_d)/2 \bigr). Experimental information on the branching ratio for DsDsπ0D_s^* \rightarrow D_s \pi^0 can provide insight into the pattern of SU(3)SU(3) violation in radiative DD^* decays.Comment: 7 pages with 2 figures not included but available upon request, CALT-68-191

    Efficiency and marginal cost pricing in dynamic competitive markets with friction

    Get PDF
    This paper examines a dynamic general equilibrium model with supply friction. With or without friction, the competitive equilibrium is efficient. Without friction, the market price is completely determined by the marginal production cost. If friction is present, no matter how small, then the market price fluctuates between zero and the "choke-up" price, without any tendency to converge to the marginal production cost, exhibiting considerable volatility. The distribution of the gains from trading in an efficient allocation may be skewed in favor of the supplier, although every player in the market is a price taker.Dynamic general equilibrium model with supply friction, choke-up price, marginal production cost, welfare theorems

    Classical Strongly Coupled QGP: VII. Shear Viscosity and Self Diffusion

    Full text link
    We construct the Liouville operator for the SU(2) classical colored Coulomb plasma (cQGP) for arbitrary values of the Coulomb coupling Γ=V/K\Gamma=V/K, the ratio of the mean Coulomb to kinetic energy. We show that its resolvent in the classical colored phase space obeys a hierarchy of equations. We use a free streaming approximation to close the hierarchy and derive an integral equation for the time-dependent structure factor. Its reduction by projection yields hydrodynamical equations in the long-wavelength limit. We discuss the character of the hydrodynamical modes at strong coupling. The shear viscosity is shown to exhibit a minimum at Γ8\Gamma\approx 8 near the liquid point. This minimum follows from the cross-over between the single particle collisional regime which drops as 1/Γ5/21/\Gamma^{5/2} and the hydrodynamical collisional regime which rises as Γ1/2\Gamma^{1/2}. The self-diffusion constant drops as 1/Γ3/21/\Gamma^{3/2} irrespective of the regime. We compare our results to molecular dynamics simulations of the SU(2) colored Coulomb plasma. We also discuss the relevance of our results for the quantum and strongly coupled quark gluon plasma (sQGP)Comment: 36 pages, 14 figure

    Atmospheric Circulation of Exoplanets

    Full text link
    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from Solar-System studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our Solar System, our guiding philosophy is that the multi-decade study of Solar-System planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.Comment: In EXOPLANETS, edited by S. Seager, to be published in the Spring of 2010 in the Space Science Series of the University of Arizona Press (Tucson, AZ) (refereed; accepted for publication

    Polarization of Upsilon(nS) at the Tevatron

    Full text link
    The polarization of inclusive Upsilon(nS) at the Fermilab Tevatron is calculated within the nonrelativistic QCD factorization framework. We use a recent determination of the NRQCD matrix elements from fitting the CDF data on bottomonium production from Run IB of the Tevatron. The result for the polarization of Upsilon(1S) integrated over the transverse momentum bin 8 < p_T < 20 GeV is consistent with a recent measurement by the CDF Collaboration. The transverse polarization of Upsilon(1S) is predicted to increase steadily for p_T greater than about 10 GeV. The Upsilon(2S) and Upsilon(3S) are predicted to have significantly larger transverse polarizations than Upsilon(1S).Comment: 15 pages, 3 figure
    corecore